- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Tomko, Paxton (2)
-
Brown, Joe (1)
-
Brown, Julia M. (1)
-
D’Angelo, Timothy (1)
-
Eastman, Katharine E (1)
-
Emerson, David (1)
-
Gavelis, Gregory (1)
-
Herndl, Gerhard J. (1)
-
Lindsay, Melody R. (1)
-
Lubelczyk, Laura C. (1)
-
Munson-McGee, Jacob H. (1)
-
Ogas, Raeya (1)
-
Orcutt, Beth N. (1)
-
Pendleton, Amanda L (1)
-
Poulton, Nicole J. (1)
-
Shaikh, Mearaj A (1)
-
Sintes, Eva (1)
-
Stepanauskas, Ramunas (1)
-
Suttiyut, Thiti (1)
-
Widhalm, Joshua R (1)
-
- Filter by Editor
-
-
Mallarino, R (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mallarino, R (Ed.)Abstract Several species of sacoglossan sea slugs possess the incredible ability to sequester chloroplasts from the algae they consume. These “photosynthetic animals” incorporate stolen chloroplasts, called kleptoplasts, into the epithelial cells of tubules that extend from their digestive tracts throughout their bodies. The mechanism by which these slugs maintain functioning kleptoplasts in the absence of an algal nuclear genome is unknown. Here, we report a draft genome of the sacoglossan slug Elysia crispata morphotype clarki, a morphotype native to the Florida Keys that can retain photosynthetically active kleptoplasts for several months without feeding. We used a combination of Oxford Nanopore Technologies long reads and Illumina short reads to produce a 786-Mb assembly (N50 = 0.459 Mb) containing 68,514 predicted protein-coding genes. A phylogenetic analysis found no evidence of horizontal acquisition of genes from algae. We performed gene family and gene expression analyses to identify E. crispata genes unique to kleptoplast-containing slugs that were more highly expressed in fed versus unfed developmental life stages. Consistent with analyses in other kleptoplastic slugs, our investigation suggests that genes encoding lectin carbohydrate-binding proteins and those involved in regulation of reactive oxygen species and immunity may play a role in kleptoplast retention. Lastly, we identified four polyketide synthase genes that could potentially encode proteins producing UV- and oxidation-blocking compounds in slug cell membranes. The genome of E. crispata is a quality resource that provides potential targets for functional analyses and enables further investigation into the evolution and mechanisms of kleptoplasty in animals.more » « less
-
Munson-McGee, Jacob H.; Lindsay, Melody R.; Sintes, Eva; Brown, Julia M.; D’Angelo, Timothy; Brown, Joe; Lubelczyk, Laura C.; Tomko, Paxton; Emerson, David; Orcutt, Beth N.; et al (, Nature)Abstract The ocean–atmosphere exchange of CO 2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton) 1–3 , their respiration usually is measured in bulk and treated as a ‘black box’ in global biogeochemical models 4 ; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy 3,5–7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO 2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.more » « less
An official website of the United States government
